

Risk assessment & adaptation-mitigation interactions

Jana Davidova,

Programme Manager, Climate Accelerated Delivery, C40

Why is it key to integrate mitigation & adaptation considerations throughout climate planning?

MITIGATION:

ACTIONS TO MITIGATE CLIMATE CHANGE BY REDUCING GREENHOUSE GAS EMISSIONS

ADAPTATION:

ACTIONS TO REDUCE THE IMPACTS OF EXTREME WEATHER EVENTS

Durban 22nd April:

70 DEATHS > 45 \$ MILLIONS DAMAGE

2019 Cities Impacts

Rio de Janeiro 06th February:

06 DEATHS > 50 \$ MILLIONS DAMAGE

Washington DC 8th July:

Highest hourly precipitation report in records dating back to 1936

Extreme weather impacts on C40 cities in 2018

General statistics:

- Created and led by cities, C40 is a group of over 94 world leading cities, representing over 700 million people and ½ of global economy.
- Over 90% of C40 cities are already experiencing climate impacts
- 81 out of 94 C40 cities have experienced extreme weather events in 2018, including extreme temperatures, heavy storm and high precipitation, flooding, drought, landslides, forest fire /wildfire.

Why to identify & address mitigation/adaptation interactions?

Washington D.C. 2016

Madrid 2017

Paris 2017

Climate Action Planning - Consider mitigation & adaptation

Climate Risks

CLIMATE HAZARDS

- DIRECT VS INDIRECT
- PHYSICAL, CHEMICAL OR BIOLOGICAL EVENTS

HAZARDS 16 (grouped under headers,	CURRENT hazard RISK level (dropdown for each hazard selected)		
can report on multiple across the table)	Probability of Hazard ¹⁷ (m)	Consequence of hazard (m)	
Extreme Precipitation			
Rain storm	o High	o High	
	o Moderate	o Moderate	
	o Low	o Low	
	o Do not know	o Do not know	
Monsoon	[dropdown as above]	[dropdown as above]	
Heavy snow	[dropdown as above] [dropdown as above]		
Fog	[dropdown as above]	[dropdown as above]	
Hail	[dropdown as above]	[dropdown as above]	
Storm and wind ∨			
Severe wind	[dropdown as above]	[dropdown as above]	
Tornado	[dropdown as above] [dropdown as above]		
Cyclone (Hurricane / Typhoon)	[dropdown as above] [dropdown as above]		

"A climate hazard is:

A short or long-term climate event that has the potential to cause damage or harm to human and natural systems."

"Each hazard is characterized by its location, intensity, frequency and probability.

Understanding the nature and likelihood of such hazards is critical to individual and community safety" (UNISDR, 2009).

CLIMATE RISK = PROBABILITY * IMPACT

Probability is identified per event, e.g.

- 50mm rainfall in 2 hrs
- Day above 40 degrees

E.g. a 1:100 year rain eventCan be multiplied (storm * high tide)

Impact depending on

- Economic value (assets)
- Population
- Systems (hard and soft)
- Institutions (robustness)

RISK ASSESSMEN

Risk: Example climate map (PROBABILITY)

Risk: Example flooding map (IMPACT)

RISK: WHAT'S ACCEPTABLE?

VARIES PER CITY

VARIES
WITHIN A
CITY

VARIES WITHIN POPULATION GROUPS

DEPENDS ON COSTS

Hence there's no adaptation equivalent for "carbon neutral". What's considered "climate resilient" is a political choice.

RISK: Changing impacts

- ~ RAPID URBANISATION
- ~ DEMOGRAPHIC TRENDS
- ~ SOCIO-ECONOMIC TRENDS
- ~ POLITICAL TRENDS

RISK: Cities and high-risk sites

WHY CITIES DEVELOP ON HIGH RISK SITES?

- HISTORIC REASONS (FOUNDATION OF CITY)
- ORIGINAL CITY SITE HAS OUTGROWN
- DEVELOPMENTS CAN CREATE NEW RISKS
- LOW-INCOME POPULATION NEED HOUSING NEAR LIVELIHOODS OPPORTUNITIES,
- BUILT AREAS RARELY RELOCATE.
- WEALTHIER GROUPS/COMPANIES LOW RISK

RISK: interdependencies of systems and cascading failures

Climate Risk Assessment – How? How often?

Risk assessment guidance

- COMPATIBLE WITH THE GLOBAL COVENANT OF MAYORS (GCOM) AND C40 CLIMATE ACTION PLANNING FRAMEWORK:
- # Essential components, which GCOM and C40 Climate Action Planning Framework define as crucial for the assessment.
- # Best practices, for highly recommended items.
- CAN SERVE AS RFP
- FIND GUIDANCE HERE

How to conduct a Risk Assessment?

1. DEFINE THE CONTEXT:

- Goals & objectives: what would be considered success
- Identify existing and potential resources
- Identify relevant stakeholders

2. ENGAGE STAKEHOLDERS AND FORM AN INTERDISCIPLINARY TEAM

3. IDENTIFY, ANALYZE AND EVALUATE RISKS:

- Examine existing methods for assessing and managing risks
- Research each of the risks: likelihood, consequence, frequency
- Prioritize climate risks

4. CREATE RISKS AND VULNERABILITIES MAP

5. ASSESS AND DEVELOP OPTIONS:

- How different climate hazards will impact the city
- Which assets will be affected, where?
- How impacts in specific assets will affect others (Interdependencies Assessment)

NOTE

 REITERATIVE ASSESSMENT OF RISKS AND ADAPTATION STRATEGIES IS STRONGLY SUGGESTED TO ASSURE NO UNDERESTIMATION OF RISKS, OR OVERLOOKING AN INCREASINGLY PRESENT CLIMATE HAZARD.

In Summary

- Probability x Impact = RiskProbability x Impact = Risk
- Probability x Impact AdaptiveCapacity = Risk

Risk definition

The probability of climate hazard increases with climate change

But the impact also increases with the development of cities

And impacts are interdependent

Adaptive Capacity reduces the risks

Integrating Mitigation & Adaptation –
Benefits and Climate Proofing

TYPES OF INTERACTIONS

Piggybacking opportunities

Potential mal-investment

WHAT ARE THE ADAPTATION-MITIGATION INTERACTIONS?

Air Conditioning

Trade Off

Flood-sensitive cycling lanes
Piggybacking

Green infrastructure
Synergies

Examples: Transport, Waste, Heat and Flooding

GIS CO

Durban
Wastewater reuse
for industries

Melbourne Cycling water sensitive Lanes

Compact or wide cities?

Rotterdam EVcharging point

C40 CITIES

Welcome!

Adaptation and Mitigation Interaction Assessment Tool

This tool is designed to assist cities in maximizing synergies and minimizing counter-productive interactions between their climate change mitigation and adaptation plans and actions.

You will provide a list of mitigation and adaptation actions (measures, projects, programs, or strategies), and the tool will assess interactions

Synergies: Actions that reduce both carbon emissions and climate risk.

<u>Trade-offs</u>: Actions with contrary effects on mitigation and adaptation, i.e., mitigation actions that increase risk or adaptation actions that increase emissions.

Mal-investment: Actions that can be undone or rendered less effective by the effects of climate change if they are not sufficiently resilient.

Piggybacking: Actions that are complementary when designed and/or implemented together, e.g., projects with opportunities to add additional mitigation or adaptation actions at a small marginal cost.

Start

Mitigation Action Selection						
Sector Filter	All	Category Filter All				
Search	Energy Storage	е				
Energy storage (gri Energy storage (dis Energy storage (bu	trict scale)					
		_				

3

Q&A

EXERCISE

EXERCISE: MITIGATION/ADAPTATION INTERACTIONS

1. What mitigation plans and policies are developed and implemented in your city **that could be mal-investments** if not climate resilient?

2. Which mitigation plans and projects in your city do you think adaptation could **piggyback** on?

Climate Action	Piggybacking opportunities	Synergies	Risk of malinvestment	Trade-off

WHO AND HOW WILL THE PEOPLE BE IMPACTED?

STAKEHOLDER TYPE

INCOME LEVEL

RACE AND ETHNICITY

AGE CATEGORY

SEX

GENDER AND SEXUALITY

DISABILITY

ECONOMIC ACTIVITY

AREAS OF THE CITY

MIGRATION STATUS

