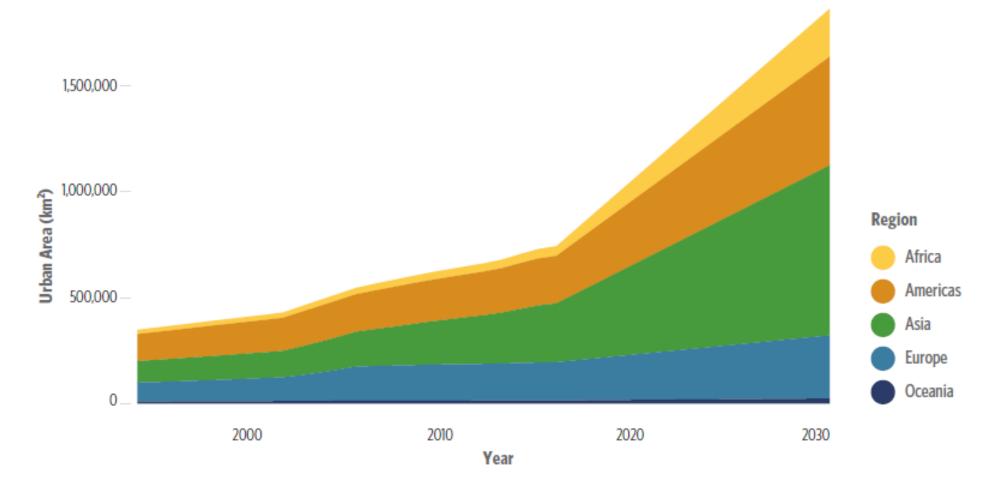


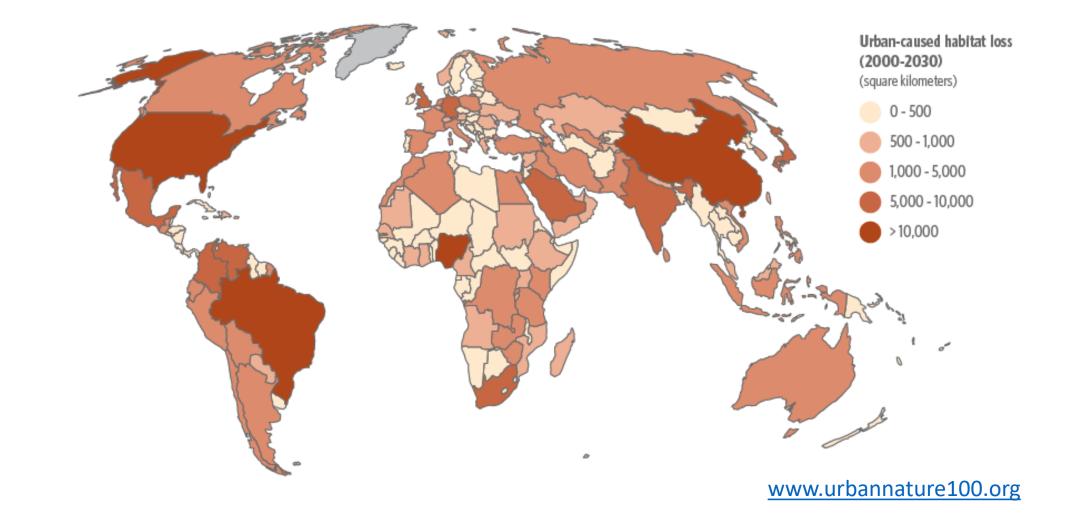
Overview: Approaches to Quantifying Biodiversity and Ecosystem Services in the Urban Context

Rob McDonald Lead Scientist, TNC

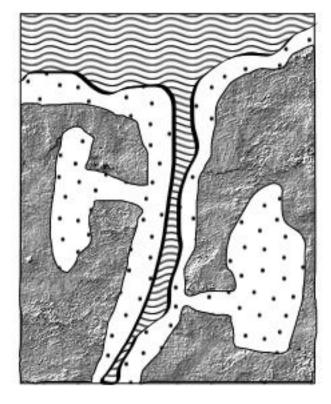
Conservation for cities


How to plan and build natural infrastructure

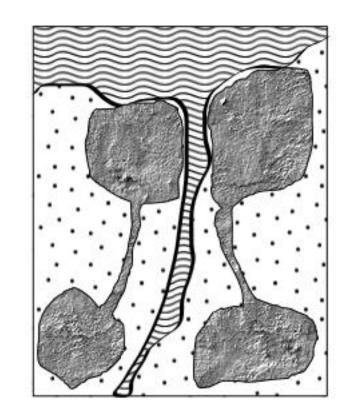
Agenda


- Context: The Urban Century
- Ecological spatial planning
 - Key concepts
 - Process
 - Ecosystem service valuation
 - Biodiversity and corridors
 - Best practices

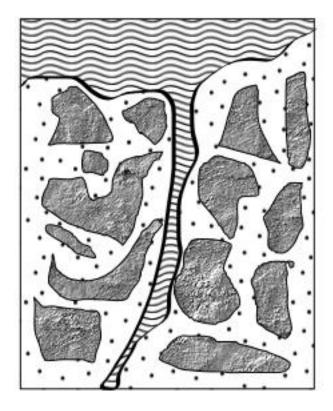
Urban Area Growth


www.urbannature100.org

Habitat loss, by country



Planning for biodiversity and human wellbeing: key concepts



Resource use focused

Biodiversity focused

Ecosystem service focused

Ecosystem services of relevance to cities

Ecosystem service	Spatial scale		
Provisioning services:			
Agriculture	Regional to global		
Water (quantity)	100's km- upstream source watershed		
Cultural services:			
Aesthetic Benefits	10's km- area of daily travel		
Recreation and tourism	10's km- area of daily travel		
Physical Health	10's km- area of daily travel		
Mental Health	10's km- area of daily travel		
Spiritual value	Varies- Often local		
Biodiversity	Varies		
Regulating services:			
Drinking water protection (water quality)	100's km- upstream source watershed		
Stormwater mitigation	100's m- downstream stormwater system		
Mitigating flood risk	100's km- downstream flood-prone areas		
Coastal protection	10's km- coastal zone		
Air purification	100's km- regional airshed		
Heat mitigation	< 100 m- varies with solar angle		

Ecological spatial planning: process

A process for Conservation for Cities:

- 1. Define the problem or policy issue
- 2. Take inventory: What ecosystem services matter?
- 3. What natural infrastructure provides those services?
- 4. Identify options for actions
- 5. Assess options and implement
- 6. Monitoring and adaptive management

1. Define the problem or policy issue

- An existing planning process
 - Comprehensive plans (e.g., PlaNYC)
 - Transportation plan
 - Zoning plan
 - Sectoral plans (e.g., stormwater, urban forestry)
- Resiliency analysis
 - 100RC and their City Resiliency Framework
- Climate change analysis

2. Take inventory: What ecosystem services matter?

Type of information	Key questions to ask stakeholders
Relevant to problem	Does the ecosystem service seem likely to help in answering the key problem
definition	or issue?
Number of people	How many people in the city rely on the service?
Beneficiaries	What specific neighborhoods or groups of people rely most on this service?
Importance	For those relying on the service, how important is it to their lives?
Critical places	What places are crucial for the provision of this service?
Threats	Which threats are most likely to degrade ecosystem service provision over time?

2. Take inventory: What ecosystem services matter?

Type of threat

Residential and commercial development

Transportation and service corridor development

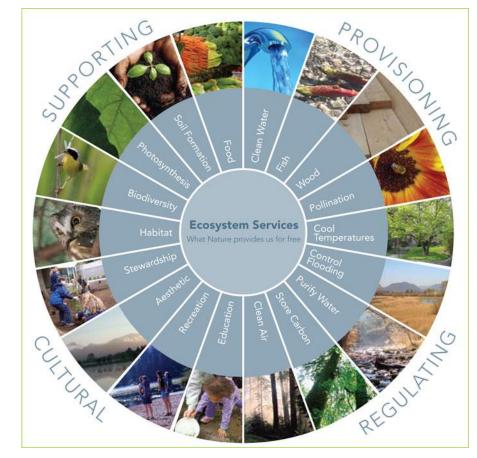
Logging and wood harvesting

Human intrusion and disturbance

Fire and fire suppression

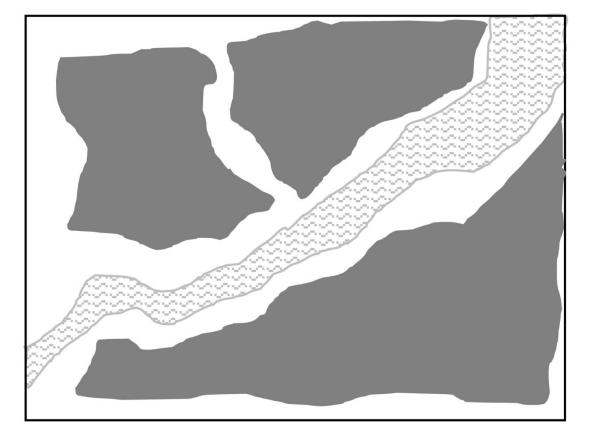
Dams and water management/use

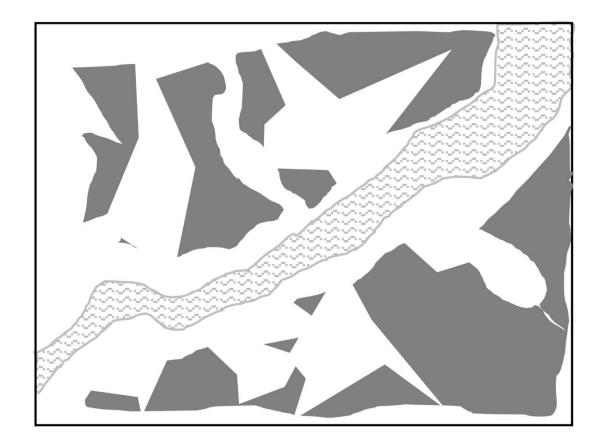
Invasive and other problematic species


Pollution

Climate change and severe weather

Ecological spatial planning: Ecosystem service valuation

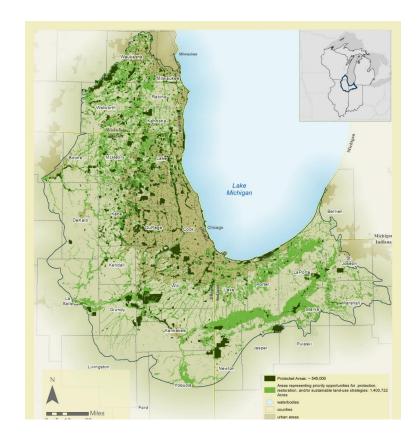

- Ecosystem service value is a function of:
 - Supply of service (ecosystem function and health)
 - Demand for service (number of people and economic value)
- How much information is enough?
 - Index
 - Physical units (e.g., tons of carbon)
 - Economic value (e.g., \$)
- What is the purpose of the information?
 - Non-spatial decision-making
 - Spatial decision-making



Stormwater mitigation models

	Green Long Term Control EZ Template	WERF BMP SELECT	National Stormwater Calculator	SUSTAIN (SWMM)
Key outputs:				
Watershed-level estimate:				
Water storage	Yes	Yes	Yes	Yes
Natural filtration	No	Yes	No	Yes
Spatial maps of benefits:				
Water storage	No	No	No	Yes
Nature filtration	No	No	No	Yes
Optimization of placement of sites for natural infrastructure	No	No	No	Yes

Ecological spatial planning: Biodiversity and corridors



Biodiversity models

	Fragstats	Connectivity models	Metapopulation models (e.g., RAMAS)	Conservation planning software
Key outputs:				
Landscape metrics	Yes	Varies	Varies	Varies
of fragmentation				
Connectivity	Some simple	Yes	Yes	No
metrics	metrics			
Demographic	No	No	Yes	No
information				
Optimal	No	No	No	Yes
conservation plans				
Existence value	No	No	No	No

Ecological spatial planning: Best practices

- Process:
 - Engage diverse stakeholders
 - Use accessible language in presentations
 - Define leadership roles early
 - Be transparent in methods
- Spatial analysis
 - Complement existing plans and efforts
 - Provide regional context
- Implementation
 - Design the plan to support decisions that key stakeholders will take.

http://www.greenprinthub.org

Thank You