

> EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT

Urban Development

City Academy: Geospatial Data Applications for Urban Development, Sao Paulo 16.-17.09.2019

EO Data for climate resilience and disaster management city plans

Hervis GHOMSI, SIRS

European Space Agency

- what are the elements that can be measured from earth observation data to support climate resilience and disaster management city plans?
- Example of Terrain motion management
- Example of Flood risks management

Outline of the Presentation

• UNDP SDG Goal 11 : Make cities inclusive, safe, resilient and sustainable

Target 5:

"By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the direct economic losses relative to global gross domestic product caused by disasters, including water-related disasters, with a focus on protecting the poor and people in vulnerable situations"

• SDG Goal 11 Target 5:

Indicators to monitor over time:

- Estimation of people living in high risk areas
- Estimation of people living in slums or inadequate housing within high risk areas

How can EO support?

The following parameters can be generated with EO data / remote sensing methods: **Population distribution** (based on census and EO data) **Risk areas** Location of (floods, terrain individual Buildings motion, (footprints, heights) landslides) **Civil security:** (prevention, Transport **Decision support tool** assistance during Infrastructure crises and post-crisis (roads, railway) assessment) Land use information (residential, industrial)

Terrain and Infrastructure motion

What is terrain motion? Upheaval or sinking of land

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Urban development

Terrain and Infrastructure motion

Various causes of terrain motion:

- Increased pressure on the surface due to concentrated building activities in combination with
- Geological disposition
- Groundwater extraction or mining
- Subsidence can cause Cracks/ damages on buildings/infrastructure
- Collapsing of buildings
- Natural factor (earthquake, more frequent flooding, etc.)

Terrain and Infrastructure motion, How to map them?

Example of Radar Interferometry method:

Radar interferometry can be broadly defined by use of <u>phase measurements</u> to precisely measure the relative distance to an object when imaged by synthetic aperture radar from two or more observations separated either in time or space.

https://www.unavco.org/education/professional-development/short-courses/course-materials/insar/2014-insar-isce-course-materials/InSARPrinciplesTheory_UNAVCO_14.pdf

Terrain and Infrastructure motion, How to map them?

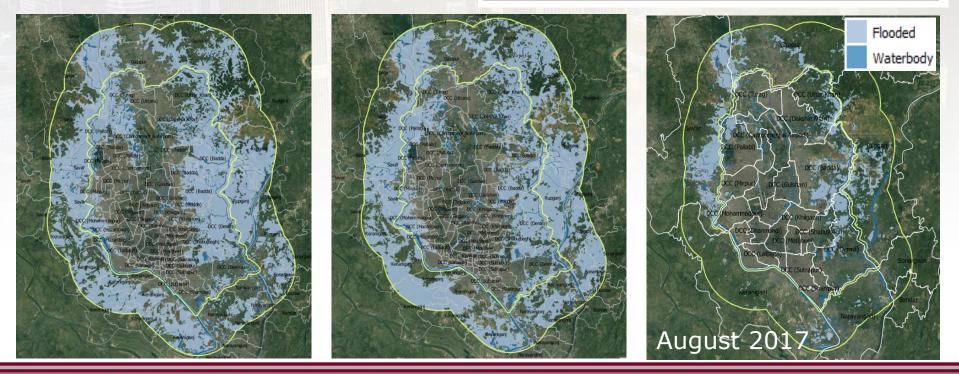
Interferometric coherence analysis for terrain motion mapping:

Comparaison of two coherence maps to assess damage caused by an earthquake or landslide (The coherence value) Example of Sentinel-1 data measurement

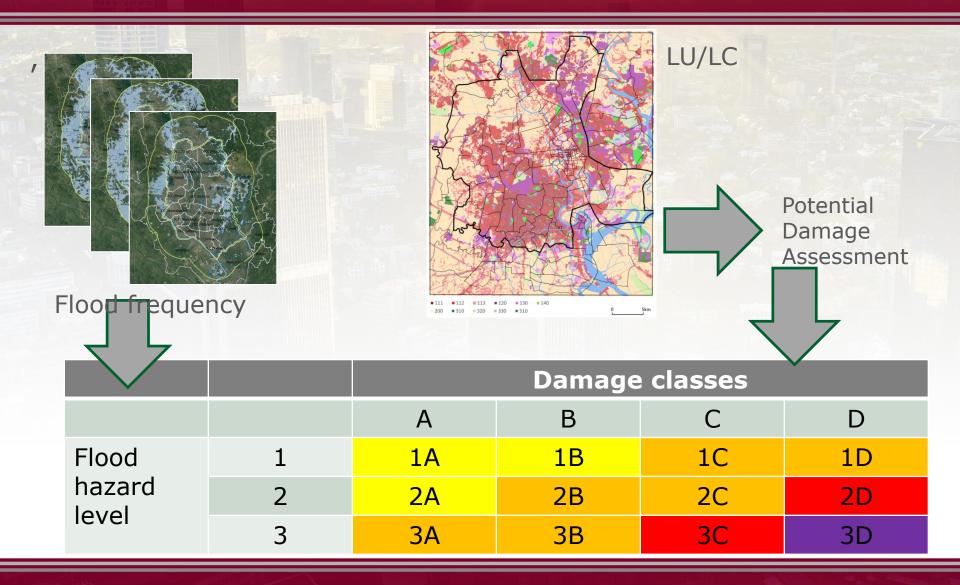
Risk areas: floods events in Dhaka

Mapping of Flood Risk area

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Urban development


European Space Agency

Risk areas: floods events in Dhaka


- Major floods 2004, 2007, 2014, 2016
- 2004 flooding event as worst case reference
- August 2017 event

	2004 2007		2014	2016		
Dhaka	Jun.20 th -	Jul.21 st –	Aug.13 th –	Aug. 3 rd –		
	Oct.7 th	Oct.15 th	Sep.25 th	Sep.15 th		

Risk areas: Floods risk in Dhaka

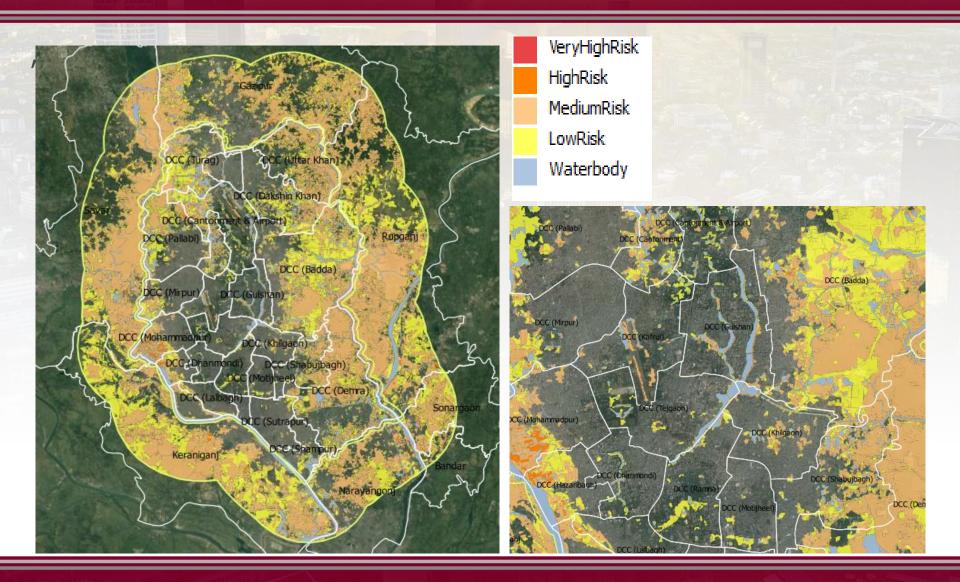
Floods Hierarchisation


Table 9 Flood risk matrix

		Damage cost on land use				
		Α	В	С	D	
Flaged becaud	1	1A	1B	1C	1D	
Flood hazard	2	2A	2B	2C	2D	
level	3	3A	3B	3C	3D	
Flood Risk classification						
Low risk 1A 1B 2A						
Medium risk 1C 1D 2B 2C						
High risk 2D 3C						
Very high risk	3D					

VeryHighRisk HighRisk MediumRisk LowRisk Waterbody

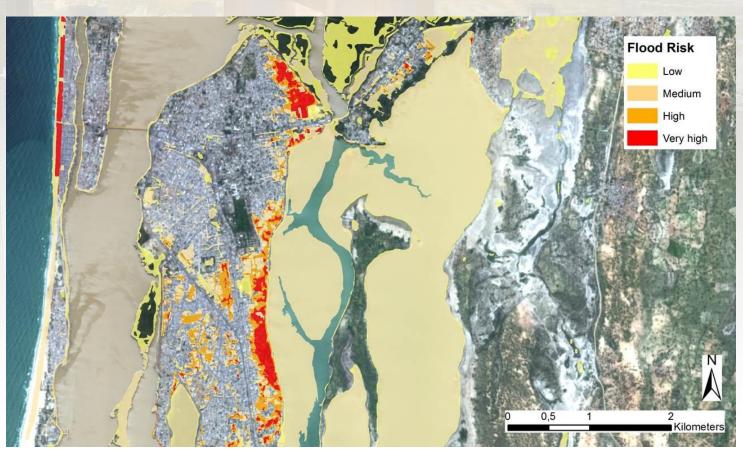
Risk areas: Floods risk in Dhaka


Risk areas: Floods risk

Exemple of Flood risk	LU Classes	Damage			Total	Leve	
evaluation table		Economic Costs	Social Damage	Physical Damag e	Flood Durati		
		0-2	0-2	0-2	on 0-2		
	Agricultural Land	1.5	0.5	0	1	3	В
	Commercial and Industrial Units	2	0.5	1	0.5	4	В
	Dump site	0	1.5	0.5	0	2	A
	Construction Sites	1	0.5	0	0	1.5	А
Important information	Forests	0.5	0	0	0	0.5	Α
for decision making	Formal high density residential - Continuous urban fabric (Sealing level: 50%-100%)	1.5	1.5	2	1.5	6.5	D
	Formal low density residential - Discontinuous urban fabric	1.5	1	2	1	5.5	С
	(Sealing level: 10%-50%)	0	0	0	0	0	^
	Land Without Current Use	0	0	0	0	0	A
	Mineral Extraction site	1	0	0.5 0.5	1	2.5 3.5	B
	Non-Residential Urban Fabric Other Natural and Semi-Natural Areas including Wetlands	0	0	0.5	1 0	0	B A
	Roads and associated land	1.5	1	2	1.5	6	С
	Sports and leisure facilties	0.5	0.5	0	0.5	1.5	A
	Other Urban / Artificial Area	1.5	1.5	1	0.5	4.5	С
	Urban Greenery	0.5	0.5	0.5	1	2.5	В
	Village Settlements (Sealing level 1-10%)	1.5	1.5	0.5	1.5	5	С
	Water Bodies	0	0	0	0	0	А

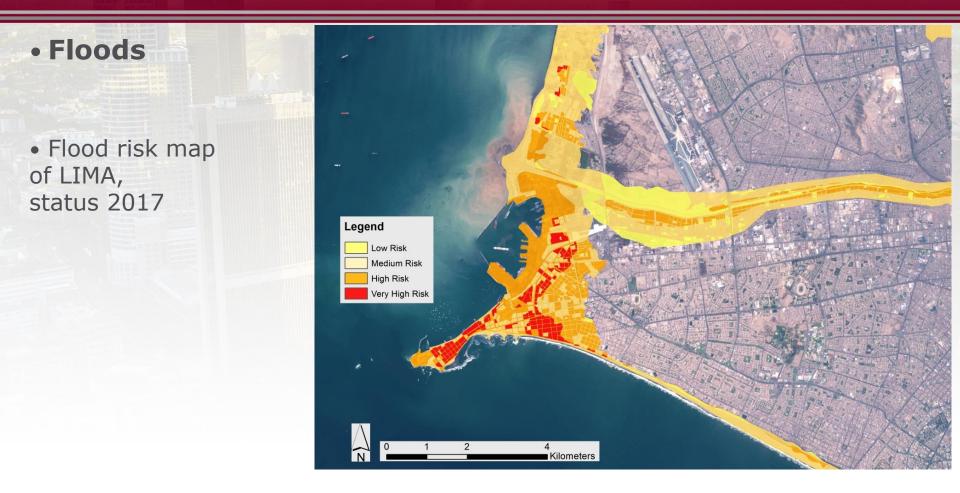
Risk areas: Floods risk in Dhaka

Risk areas: Floods risk in Saint-Louis


Subset of Flood Hazard Map of Saint Louis (Ile Saint Louis, northern part of Island of Sor, Khor) (Background Image: Sentinel 2, recorded on 10/09/2017)

Risk areas: Floods risk in Saint-Louis

 Flood risk map of Saint-Louis, status 2017

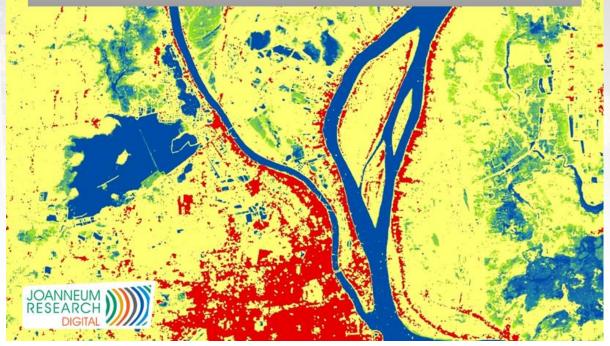

Floods

Subset of Flood Risk Map of Saint Louis (Ile Saint Louis, northern part of Island of Sor, Khor) (Background Image: Sentinel 2, recorded on 10/09/2017)

Risk areas: Floods risk in Lima

Flood Subset of Flood Risk Map for Callao – La Punta and Central Lima considering Tsunamis and flooding from River Rímac (Background Image: Sentinel2A 20170220)

Risk areas: Floods risk in Phnom Penh



Sino A

Floods history: Phnom Penh from S1

Phnom Penh; Cambodia: Flood Monitoring with Sentinel-1

SAR A.

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Urban development

European Space Agency

Thank you for your attention!

SIRS

Dr Christophe Sannier Hervis Ghomsi Sebastien Delbour 27 Rue du Carrousel, 59650 Villeneuve-d'Ascq France

christophe.sannier@sirs-fr.com hervis.ghomsi@sirs-fr.com sebastien.delbour@sirs-fr.com contact@sirs-fr.com info.gaf.de