

EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT

Urban Development

City Academy: Geospatial Data Applications for Urban Development, Sao Paulo 16.-17.09.2019

Introduction to Concepts in Remote Sensing

Hervis GHOMSI, SIRS

European Space Agency

Agenda

This presentation will cover the following topics:

- What is Remote Sensing?
- Some keys concepts
- Optical vs Radar remote sensing
- Platforms for images acquisition
- Very high spatial resolution vs high spatial resolution, what difference for what application?
- Some applications of remote sensing

The Topics will be explained by the help of many image examples from current satellites.

Remote Sensing: A science which obtains information about the Earth by scanning it from a satellite of high flying aircraft.

Or

The science of acquiring data without being in contact with it.

Motivations of Remote sensing

Several motivations:

Systematic data collection

Several motivations:

 Repeatability of acquisitions: Control interval of a sensor. 5 days for Sentinel 2 (A&B) with constelletaion of 2 satellites

To be taken into account for time series analysis and historical land monitoring.

Motivations of Remote sensing

Several motivations:

Global coverage

https://www.airbus.com/newsroom/pressreleases/en/2018/03/SpaceDataHighway-starts-full-Copernicus-service.html

Several motivations:

Inaccessible areas become accessible (rugged terrain)

Example: Machu Picchu, Peru

https://creativecommons.org/licenses/by-sa/2.0

Satellite: An artificial body placed in orbit round the Earth or another planet in order to collect information or for communication.

Types of satellites:

- Research
- Weather
- Communication
- Navigation
- Earth observation

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Urban development

European Space Agency

13-9-2018, https://www.tankonyvtar.hu/en/tartalom/tamop425/0027_DAI6/ch01s02.html

13-9-2018, https://www.thueringen.de/mam/th8/lvg/vw-gemcont/2018_tb2017/2017bauer_gemusebautag_ef_phaenopt.pdf

Sensors: Passive vs Active

 Passive sensors: Records energy <u>reflected</u> or <u>emitted</u> by a target illuminated by <u>Sun</u>.

 Active sensors: Iluminates the target <u>itself</u> and measures its reflectance.

13-9-2018, https://www.tankonyvtar.hu/en/tartalom/tamop425/0027_DAI6/ch01s03.html

Sensors: Passive vs Active

 Passive sensors: Records energy reflected or emitted by a target illuminated by Sun.

• Active sensors: Iluminates the target **itself** and measures its reflectance.

13-9-2018, https://www.tankonyvtar.hu/en/tartalom/tamop425/0027_DAI6/ch01s03.html

Sensors: Optical vs Radar

 Optical sensors makes use of visible, near infrared and shortwave infrared reflectance.

 Radar sensor makes use of radio wavelengths

Sensors: Optical vs Radar

 Radar sensors are not sensitive to atmospheric effects

 Optical sensors are sensitive to atmospheric effects

Some differences				
Characteristics	Optical	Radar		
Plate-forme	Plane/Satellite	Plane/Satellite		
Radiation	passive	Active		
Frequency	Several frequencies	Several frequencies		
Polarimetry	N/A	Several polarization		
Acquisition	Day	Day & night		
Weather/cloud sensitivy	Sensitive	Not sensitive		
Electromagnetic Spectrum	0,3 µm - 14 µm.	0,8 mm – 1,3 m		

- Satellite
- Plane
- Helicopter
- Drone /UAV
- Etc.

https://www.satimagingcorp.com/satellite-sensors/spot-6/

Satellite

• Plane

Helicopter

• Drone/UAV

• Etc.

https://www.aerobuzz.fr/breves-aviation-generale/green-observer-lavion-au-service-de-la-photo-aerienne/

• Satellite

- Plane
- Helicopter
- Drone /UAV

• Etc.

http://www.ccg-gcc.gc.ca/Flotte/Helicopteres

- Satellite
- Plane
- Helicopter
- Drone /UAV
- Etc.

https://crss-sct.ca/fr/conferences/sct2017/atelier-de-demonstration-de-vols-de-drones-et-dacquisitions-dimages/

Two types of Remote sensing:

• Radar remote sensing:

Radar system has 03 main functions:

- Transmit a microwave (radio) signal to a scene
- Receive the backscattered signal from the scene
- Record the intensity (detection) of the return signal and the delay between it and the transmitted signal.

Acquisition possible at night as well as during the day and under cloud cover.

Source: rnca

Some Sensors resolutions

Some Sensors resolutions: VHR vs HR

©CNES

17/12/2011: Pléiades-1A 02/12/2012: Pléiades-1B 23/06/2015: Sentinel-2A 07/03/2017: Sentinel-2B

Sentinel-2

©ESA

Some Sensors resolutions: VHR vs HR

Case study:	Pléiades	s Sentinel-2
Characteristics	Very High Resolution (VHR)	High Resolution (HR)
Spatial Resolution	0,5 - 2m)	10m - 60m
Level of detail	High	Low
Mapping Accuracy	High	Low
Territorial scale	Small	Large
Swath	20km	290km
Data cost	Expensive (eg: ±21,25\$ /km² for Pleiades images)	Free access (eg: Sentinel2)

Some Sensors resolutions: VHR vs HR

Lima: 20/03/2016 **Pléiades (0,5m)**

Scale: 1/7000

Lima: 21/04/2018 Sentinel2 (2m)

Some Sensors resolutions VHR vs HR

Lima: 27/02/2018 **Pléiades (2m)**

Scale: 1/7000

Lima: 01/03/2018 Sentinel2 (10m)

Sensor Panchromatic vs Multi-spectral

Data	Spatial Resolution	Spectral Resolution
Panchromatic	High (eg: Pleiades 0,5m)	single spectral channel
Multi-spectral	Low (eg: Pleiades 2m)	Several spectral channels

Pléiades spectral bands (image credit: CNES)

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Urban development

Sensor Panchromatic vs Multi-spectral

Dakar: Pléiades 01/03/2018

Scale: 1/1800

Panchromatic (0,5m)

Multi-spectral (2m)

Sensor Panchromatic vs Multi-spectral

- Pansharpening operation: This operation consists of merging the panchromatic image and the multispectral image to create a new image containing the spatial resolution of PAN image and spectral resolution of MS image.
- Dakar: Pléiades 01/03/2018

PAN (0,5m)

MS (2m)

=

PANSHARPEN (0,5m)

Sensor-example: Sentinel-2

Sentinel-2A & Sentinel-2B:

- Earth observation mission developed by ESA
- MultiSpectralImager (MSI sensor)
- Spatial resolution: 10 m, 20 m, 60m
- 5 days revisit time with 2 satellites

(image credit: http://spaceflight101.com/copernicus/sentinel-2/)

Some applications:

Remote sensing operating chain

- (A) The energy source or radiation
- (B) The radiation of the atmosphère
- (C) Interaction with the target

(D) The recording of energy by the sensor

(E) Transmission, reception and processing

(F) Interpretation and analysis

(G) The application

Some applications: Urban expansion

Some applications: Urban expansion

Historical monitoring of urban expansion

Some applications: Monitoring Floods events

Some applications: Monitoring Farmland

Historical monitoring of Farmland

13-09 18-10 04-11 19-11

→ EARTH OBSERVATION FOR SUSTAINABLE DEVELOPMENT Urban development

European Space Agency

Thank you for your attention!

SIRS Dr Christophe Sannier Hervis Ghomsi Sebastien Delbour 27 Rue du Carrousel, 59650 Villeneuve-d'Ascq France

christophe.sannier@sirs-fr.com hervis.ghomsi@sirs-fr.com sebastien.delbour@sirs-fr.com contact@sirs-fr.com info.gaf.de